domingo, 23 de junio de 2019

PRUEBA DE HIPOTESIS PARA PROPORCIONES DE UNA SOLA MUESTRA


Pruebas de hipótesis para proporciones
Prueba de Hipótesis de Proporciones para una Sola Muestra

Cuando el objetivo del muestreo es evaluar la validez de una afirmación con respecto a la proporción de una población, es adecuado utilizar una prueba de una muestra. La metodología de prueba depende de si el número de observaciones de la muestra es grande o pequeño.
Como se habrá observado anteriormente, las pruebas de grandes muestras de medias y proporciones son bastante semejantes. De este modo, los valores estadísticos de prueba miden la desviación de un valor estadístico de muestra a partir de un valor propuesto. Y ambas pruebas se basan en la distribución normal estándar para valores críticos. Quizá la única diferencia real entre las ambas radica en la forma corno se obtiene la desviación estándar de la distribución de muestreo.



Esta prueba comprende el cálculo del valor estadístico de prueba Z.




Ejemplo #1 (resuelto)

En un estudio se afirma que 3 de 10 estudiantes universitarios trabajan. Pruebe esta aseveración, a un nivel de significación de 0,025, respecto a la alternativa de que la proporción real de los estudiantes universitarios trabajan es mayor de lo que se afirma, si una muestra aleatoria de 600 estudiantes universitarios revela que 200 de ellos trabajan. La muestra fue tomada de 10000 estudiantes.




La hipótesis es aceptada ya que Z prueba es 1,84 que es menor que Z tabla 1,96 por lo tanto es cierto que 3 de cada 10 estudiante trabajan.


Ejemplo #2 (para resolver)

Una encuesta realizada por Bancomer a 35 clientes indicó que un poco más del 74 por ciento tenían un ingreso familiar de más de $200,000 al año. Si esto es cierto, el banco desarrollará un paquete especial de servicios para este grupo. La administración quiere determinar si el porcentaje verdadero es mayor del 60 por ciento antes de desarrollar e introducir este nuevo paquete de servicios. Los resultados mostraron que 74.29 por ciento de los clientes encuestados reportaron ingresos de $200,000 o más al año.

Prueba de proporciones de dos muestras


El objetivo de una prueba de dos muestras es determinar si las dos muestras independientes fueron tomadas de dos poblaciones, las cuales presentan la misma proporción de elementos con determinada característica. La prueba se concentra en la diferencia relativa (diferencia dividida entre la desviación estándar de la distribución de muestreo) entre las dos proporciones muestrales. Diferencias pequeñas denotan únicamente la variación casual producto del muestreo (se acepta H0), en tanto que grandes diferencias significan lo contrario (se rechaza H0). El valor estadístico de prueba (diferencia relativa) es comparado con un valor tabular de la distribución normal, a fin de decidir si H0 es aceptada o rechazada. Una vez más, esta prueba se asemeja considerablemente a la prueba de medias de dos muestras.


La hipótesis nula en una prueba de dos muestras es


Ejemplo# 1 (resuelto)



Se ponen a prueba la enseñanza de la Estadística empleando Excel y Winstats. Para determinar si los estudiantes difieren en términos de estar a favor de la nueva enseñanza se toma una muestra de 20 estudiantes de dos paralelos. De paralelo A 18 están a favor, en tanto que del paralelo B están a favor 14. ¿Es posible concluir con un nivel de significación de 0,05 que los estudiantes que están a favor de la nueva enseñanza de la Estadística es la misma en los dos paralelos?





La hipótesis es aceptada ya que 1,58 está en la zona de aceptación, entonces la proporción de los estudiantes que están a favor de la nueva enseñanza de la estadística es la misma en los dos paralelos.

Ejemplo #2 (para resolver)

Un artículo reciente, publicado en el diario USA TODAY, indica que solo a uno de cada tres egresados de una universidad les espera un puesto de trabajo. En una investigación a 200 egresados recientes de su universidad, se encontró que 80 tenían un puesto de trabajo. ¿Puede concluirse en el nivel de significancia 0,02, que en su universidad la proporción de estudiantes que tienen trabajo es mayor?



No hay comentarios:

Publicar un comentario